Risk Based Approach to Cultural Heritage Buildings

www.firetech.be

Prof. dr. ir. P. Vandevelde

FiRE-TECH is a thematic Network Fire Risk Evaluation To European Cultural Heritage

- **⇒** AIM
 - Evaluate fire risk to cultural heritage
 - Suggest quantification methods
 - Elaborate decision methods for optimisation of the use of fire protection methods

\Rightarrow

Consortium constituted in 2001

- 11 Partners
 - TNO (NL), WFR (UK), IST (P), CSTB (Fr), TUBS-iBMB (Ger), AUTH (Gr), UIBK (Au), IUAV (It), FSN (Sw), EMI (Hu)
 - Coordinator: UGent (B)
- Project started February 2002
- Project finalised Spring 2005

→ Motives

- Fire presents most serious threat to cultural heritage
- Europe looses one Cultural Heritage building a day

Motives

- Lack of interest from fire community
- Lack of specific national regulations
- General prescriptive regulations
 - Can often not be met
 - Sometimes detrimental
 - Not (cost) effective
- BeneFeu project promoted risk based approach for fire protection

- □ Two Main Parts
 - Collection of useful information
 - Develop a risk based approach optimizing the use of available protection means

- Collection of information on:
 - Existing practices and regulations
 - Fires affecting cultural heritage
 - Fire performance of ancient materials
 - Fire protection technologies and products
- Develop a risk based approach
 - Select suitable fire risk assessment methods
 - Develop a quantitative decision model

- \Rightarrow
- Existing practices and Regulations
- Few specific regulations address Cultural Heritage
- Some countries have guidance documents.
 - Examples of these guidelines are documents from Historic Scotland, English Heritage.
- Most regulations are prescriptive.

Analysis fires affecting cultural heritage

- Analysis of fires affecting cultural heritage
 - No systematic statistical information
 - Main causes of fires:
 - Arson
 - Renovation works
 - Old electrical/gas installations
 - Late detection,...

Fire Behaviour of Ancient Materials and Assemblies

- Evaluation of the fire behaviour of ancient materials and assemblies
 - Evaluation of load-bearing elements
 - Evaluation of separating elements

Fire protection technologies and products

- Overview of
 - Available technologies;
 - Their efficiency;
 - Their reliability;
 - Their applicability and acceptability in cultural heritage buildings;
 - Their cost.

⇒ Fire risk assessment methods

- 9 Ranking Methods
 - Risk Value Method:
 - Fire Safety Evaluation System:
 - Specific Commercial Property Evaluation Schedule:
 - Dow Fire and Explosion Index:
 - XPS FIRE
 - Hierarchical Approach
 - SIA 81 Gretener Method
 - Fire Risk Assessment Method for Engineering
 - The Fire Risk Index Method

Fire risk assessment methods

- 7 Quantitative Methods
 - Computation of Risk Indices by Simulation Procedures
 - Risk-Cost Assessment Model (FiRECAM-Fire Risk Evaluation and Cost Assessment Model)
 - The Building Fire Safety Engineering Method
 - Fire Evaluation and Risk Assessment System
 - Petri net to Fire Safety Measures
 - Event Tree Analysis as a Risk Analysis Method
 - Fire Risk Assessment with Reliability Index β

- Much attention paid to
 - Event Tree Analysis Method
 - Case Studies: De Nieuwe Kerk (NI), Chiado (P), St Mary of Consolation (It) ...
 - Fire Risk Index Method
 - Case Study: Hoffburg Schönbrunn (Au)
 - Fire Risk Assessment Method for Engineering
 - Case Study: Het Pand Ugent (B)
 - → ALL VERY SUITABLE

- Quantitative Decision Methods
 - The Analytical Hierarchical Process
 - Defines
 - General policy
 - Objectives
 - Strategies
 - Measures

The Analytical Hierarchical Process

🙃 General Policy

P1 - Fire Safety of Cultural Heritage Building

Objectives

- OB1 Protect the occupants
- OB2 Protect the firemen
- OB3 Protect the building

OB4 - Protect contents

- OB5 Safeguard continuity of activity
- OB6 Protect the environment

Strategies

- ST1 Reduce the probability of fire start
- ST2 Facilitate fire fighting

- ST3 Facilitate egress
- ST4 Limit the fire development/propagation
- ST5 Limit the effects of fire

The Analytical Hierarchical Process

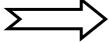
Measures

- M1 Reaction to fire
- M2 Fire resistance of structure
- M3 Fire resistance of partitions
- M4 Size of fire compartments
- M5 Characteristics and location of openings on the facades
- M6 Distance between buildings
- M7 Geometry of egress paths
- M8 Access for the firemen
- M9 Means for fire detection
- M10 Means for fire suppression

- M11 Smoke control
- M12 Emergency and alarm signs
- M13 On site firemen
- M14 Fire brigade
- M15 Maintenance of fire safety systems
- M16 Education for fire safety
- M17- Emergency planning + training
- M18 -Salvage operation management
- M19 Periodic inspection of the building

- ➡ Two Numerical Tools
 - ALADIN (CSTB)
 - Fortran computer programme
 - Limited to comparison of six measures
 - Cost/Effectiveness Sheet (IST)
 - Excel sheet
 - No limitation in the number measures that can be compared
- both include COST EFFECTIVENESS COMPARISON

Case Study: De Nieuwe Kerk



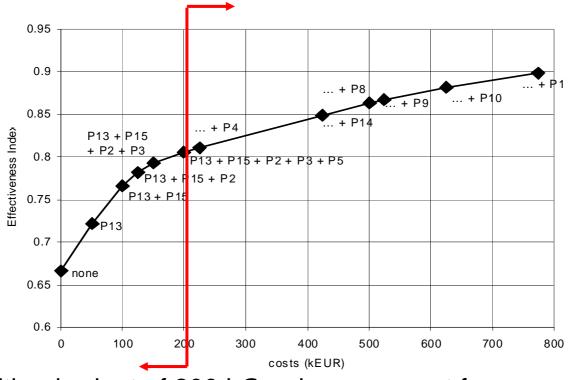
Building

- 2000m² church 25m² shop
- 🔁 100m high tower

Present situation – Risk Analysis

- Conclusions
- tower: 35 % probability people in tower to be evacuated only by special means;
- church: 22% probability that more than 4% of the building would be destroyed

Extra measures are needed for both tower and church



Case Study: De Nieuwe Kerk

\Rightarrow

Cost-effectiveness

Note:

With a budget of 200 k€an improvement from an effectiveness index (EI) of 66.6% to 80.5%

To reach the max. EI (± 90%) another 600 k€ is needed.

Thank you for your attention

Risk Based Approach to cultural heritage

Buildings - Prof. Vandevelde©

